Power Spectrum Analysis of EEG Signals for Estimating Visual Attention
نویسندگان
چکیده
The task oriented brain activity analysis and classification is a prime issue in EEG signal processing these days. The similar attempt has been done here to estimate the brain activity on the basis of power spectrum analysis. For this, the modified approach involving both Independent Component Analysis (ICA) and Principal Component Analysis (PCA) methodologies has been used in this paper to investigate the behavior of brain's electrical activity for a simple case of visual attention. The proposed method of EEG classification can be very useful in predicting the action or the intention of action performed on the basis of EEG which leads to more development in brain computer interface. The EEG data has been referred from a website and the mathematical tool for EEG analysis called EEGLAB has been used to perform work in this paper.
منابع مشابه
Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light
The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...
متن کاملFeasibility of the Application of Moment Of Inertia as a Feature to Study High-Frequency Bands in Brain Signals
Introduction Many features, emerging from mathematical techniques, have been used in the analysis of brain signals. In this study, the physical quantity of “moment of inertia” (MOI) was introduced as a feature to enhance high-frequency waves (HFWs) in electroencephalography (EEG). Materials and Methods In this research, the recorded EEGs from F3, F4, and Cz points in 20 males were used. A total...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملA Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State
In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...
متن کاملEffect of Acute and Chronic Heat Exposure on Frequency of EEG Components in Different Sleep-Wake State in Young Rats
The recent literatures indicate that central nervous system (CNS) is highly vulnerable to systemic hyperthermia induced by whole body heating on conscious animals. In the present study, cerebral electrical activity or EEG (electroencephalogram) following exposure to high environmental heat has been studied in moving rats. Rats were divided into three group (i) acute heat stress-subjected to a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012